13 research outputs found

    A literature review of dispersal pathways of Aedes albopictus across different spatial scales: implications for vector surveillance

    Get PDF
    Background: Aedes albopictus is a highly invasive species and an important vector of dengue and chikungunya viruses. Indigenous to Southeast Asia, Ae. albopictus has successfully invaded every inhabited continent, except Antarctica, in the past 80 years. Vector surveillance and control at points of entry (PoE) is the most critical front line of defence against the introduction of Ae. albopictus to new areas. Identifying the pathways by which Ae. albopictus are introduced is the key to implementing effective vector surveillance to rapidly detect introductions and to eliminate them. Methods: A literature review was conducted to identify studies and data sources reporting the known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal between 1940-2020. Studies and data sources reporting the first introduction of Ae. albopictus in a new country were selected for data extraction and analyses. Results: Between 1940-2020, Ae. albopictus was reported via various dispersal pathways into 86 new countries. Two main dispersal pathways were identified: (1) at global and continental spatial scales, maritime sea transport was the main dispersal pathway for Ae. albopictus into new countries in the middle to late 20th Century, with ships carrying used tyres of particular importance during the 1980s and 1990s, and (2) at continental and national spatial scales, the passive transportation of Ae. albopictus in ground vehicles and to a lesser extent the trade of used tyres and maritime sea transport appear to be the major drivers of Ae. albopictus dispersal into new countries, especially in Europe. Finally, the dispersal pathways for the introduction and spread of Ae. albopictus in numerous countries remains unknown, especially from the 1990s onwards. Conclusions: This review identified the main known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal leading to the first introduction of Ae. albopictus into new countries and highlighted gaps in our understanding of Ae. albopictus dispersal pathways. Relevant advances in vector surveillance and genomic tracking techniques are presented and discussed in the context of improving vector surveillance

    The effect of sound lure frequency and habitat type on male Aedes albopictus (Diptera: Culicidae) capture rates with the male Aedes sound trap

    Get PDF
    The global distribution of Aedes albopictus (Skuse) is rapidly expanding which has contributed to the emergence and re-emergence of dengue and chikungunya outbreaks. Improvements in vector surveillance are necessary to facilitate optimized, evidence-based vector control operations. Current trapping technology used to target Ae. albopictus and other Aedes species for vector surveillance are limited in both scale and scope, thus novel tools are required. Here, we evaluated the Male Aedes Sound Trap (MAST) for its capacity to sample male Ae. albopictus. Aims of this study were twofold: 1) to determine the most effective frequency for capturing male Ae. albopictus and 2) to investigate fine-scale variations in male Ae. albopictus abundance. MASTs which produced sound lure frequencies between 500 and 650 Hz captured significantly more male Ae. albopictus than those with sound lure frequencies set to 450 Hz. Further, the higher sound lure frequency of 700 Hz significantly reduced catches relative to 650 Hz. MASTs placed in woodland habitats captured significantly more male Ae. albopictus than MASTs placed near houses. These results provide baseline information for optimizing sound lure frequencies and placement of the MAST to sample male Ae. albopictus in remote areas

    Beberapa Aspek Perilaku Vektor Malaria Nyamuk an. Sundaicus (Theobald) Di Lampung, Sumatera

    Full text link
    Or alternatively a section in the results should give data about what species were collected [t2]It is unclear if the MBRs in this sentence are for all anopheles species combined or just sundaicus. [t3]The previous sentence contradicts this – in that it shows no difference in indoor and outdoor biting rates [t4]It is not clear what is meant 0 [t5]It appears that these secondary peaks may just be random variations and not true peaks – if statistical analyses shows that there are significantly higher, than leave this statement in, otherwise, probably should remove. [t6]Do you have any data to present in this manuscript to document this statement? [t7]It appears to be both exo- and endophilic with equal indoor and outdoor feedin

    Performance of a fully‐automated system on a WHO malaria microscopy evaluation slide set

    Get PDF
    Background: Manual microscopy remains a widely-used tool for malaria diagnosis and clinical studies, but it has inconsistent quality in the field due to variability in training and field practices. Automated diagnostic systems based on machine learning hold promise to improve quality and reproducibility of field microscopy. The World Health Organization (WHO) has designed a 55-slide set (WHO 55) for their External Competence Assessment of Malaria Microscopists (ECAMM) programme, which can also serve as a valuable benchmark for automated systems. The performance of a fully-automated malaria diagnostic system, EasyScan GO, on a WHO 55 slide set was evaluated. Methods: The WHO 55 slide set is designed to evaluate microscopist competence in three areas of malaria diagnosis using Giemsa-stained blood films, focused on crucial field needs: malaria parasite detection, malaria parasite species identification (ID), and malaria parasite quantitation. The EasyScan GO is a fully-automated system that combines scanning of Giemsa-stained blood films with assessment algorithms to deliver malaria diagnoses. This system was tested on a WHO 55 slide set. Results: The EasyScan GO achieved 94.3 % detection accuracy, 82.9 % species ID accuracy, and 50 % quantitation accuracy, corresponding to WHO microscopy competence Levels 1, 2, and 1, respectively. This is, to our knowledge, the best performance of a fully-automated system on a WHO 55 set. Conclusions: EasyScan GO’s expert ratings in detection and quantitation on the WHO 55 slide set point towards its potential value in drug efficacy use-cases, as well as in some case management situations with less stringent species ID needs. Improved runtime may enable use in general case management settings

    Vector Interactions and Molecular Adaptations of Lyme Disease and Relapsing Fever Spirochetes Associated with Transmission by Ticks

    Get PDF
    Pathogenic spirochetes in the genus Borrelia are transmitted primarily by two families of ticks. The Lyme disease spirochete, Borrelia burgdorferi, is transmitted by the slow-feeding ixodid tick Ixodes scapularis, whereas the relapsing fever spirochete, B. hermsii, is transmitted by Ornithodoros hermsi, a fast-feeding argasid tick. Lyme disease spirochetes are generally restricted to the midgut in unfed I. scapularis. When nymphal ticks feed, the bacteria pass through the hemocoel to the salivary glands and are transmitted to a new host in the saliva after 2 days. Relapsing fever spirochetes infect the midgut in unfed O. hermsi but persist in other sites including the salivary glands. Thus, relapsing fever spirochetes are efficiently transmitted in saliva by these fast-feeding ticks within minutes of their attachment to a mammalian host. We describe how B. burgdorferi and B. hermsii change their outer surface during their alternating infections in ticks and mammals, which in turn suggests biological functions for a few surface-exposed lipoproteins

    The impact of mass drug administration and long-lasting insecticidal net distribution on Wuchereria bancrofti infection in humans and mosquitoes: an observational study in northern Uganda

    Get PDF
    BACKGROUND: Lymphatic filariasis (LF) in Uganda is caused by Wuchereria bancrofti and transmitted by anopheline mosquitoes. The mainstay of elimination has been annual mass drug administration (MDA) with ivermectin and albendazole, targeted to endemic districts, but has been sporadic and incomplete in coverage. Vector control could potentially contribute to reducing W. bancrofti transmission, speeding up progress towards elimination. To establish whether the use of long-lasting insecticidal nets (LLINs) can contribute towards reducing transmission of W. bancrofti in a setting with ongoing MDA, a study was conducted in an area of Uganda highly endemic for both LF and malaria. Baseline parasitological and entomological assessments were conducted in 2007, followed by high-coverage LLIN distribution. Net use and entomological surveys were carried out after one year, and final parasitological and entomological evaluations were conducted in 2010. Three rounds of MDA had taken place before the study commenced, with a further three rounds completed during the course of the study. RESULTS: In 2007, rapid mapping indicated 22.3% of schoolchildren were W. bancrofti antigen positive, and a baseline survey during the same year found age-adjusted microfilaraemia prevalence was 3.7% (95% confidence interval (CI): 2.6-5.3%). In 2010, age-adjusted microfilaraemia prevalence had fallen to 0.4%, while antigenaemia rates were 0.2% in children < 5 years and 6.0% in ≥ 5 years. In 2010, universal coverage of mosquito nets in a household was found to be protective against W. bancrofti antigen (odds ratio = 0.44, 95% CI: 0.22-0.89). Prevalence of W. bancrofti larvae in anopheline mosquitoes had decreased significantly between the 2007 and 2010 surveys, but there was an apparent increase in vector densities. CONCLUSION: A marked reduction in W. bancrofti infection and infectivity in humans was observed in the study area, where both MDA and LLINs were used to reduce transmission. The extent to which LLINs contributed to this decline is equivocal, however. Further work investigating the impact of vector control on anopheline-transmitted LF in an endemic area not benefitting from MDA would be valuable to determine the effect of such interventions on their own

    Larvivorous fish for malaria prevention

    No full text
    This is the protocol for a review and there is no abstract. The objectives are as follows:\ud \ud To determine the ability of larvivorous fish to prevent malaria by evaluating the impact on:\ud \ud a) confirmed malaria cases in humans; and/or\ud \ud b) the density of adult malaria vectors.\ud \ud If research evidence for an effect on confirmed malaria cases and density of adult vectors is equivocal or insufficient, we will examine the evidence for potential efficacy from field studies meeting minimum design criteria that examine the effects of larvivorous fish on the density of vector larvae or the prevalence of breeding sites positive for larvae of the vector
    corecore